Product Description
SMR Reducer Specification
1 Output Hub
Standard or alternative hubs with metric bores are available to suit international standard shaft diameters.
2 Precision High Quality Gearing
Computer Designed Helical Gears, Strong Alloy Materials for High Load Capacity, Case Carburized for long life, Ground Profile(some intermediate pinions are shaved) Crown tooth Profile, In Conformance with ISO 13281997, 98% Efficiency for Per Stage, Smooth Quiet Operation with Several Teeth in Mesh.
3 Maximum Capacity Housing Design
Close Grain Cast Iron Construction, Excellent Vibration Dampening & Shock Resistance Features, Precision Bored and Dowelled to Ensure Accurate In-Line Assembly.
4 Strong Alloy Steel Shafts
Strong Alloy Steel, Hardened, Ground on Journals, Gear Seatings and Extensions, for
Maximum Load and Maximum Torsional Loads. Generous Size Shaft
Keys for Shock Loading and Conform to ISO Standards.
5 Additional Case Lugs Except H and J Gear Case
Eliminates the Need for Critical Tightening of Torque Arm Bolts. Controls Position of
Standard Torque Arm Mounting within Recommended limits.
6 BackStops
Alternative Parts, Antirun Back Device, AreAvailable on all 13:1 and 20:1 Ratio Units and do not recommend for 5:1 Units.
7 Bearings and Oilseals
Bearings are Adequately Proportioned and Conform to ISO Dimension Plan, Readily
Available WorldWide. Oilseals are Double Lipped Garter Spring Type, Ensuring Effective Oil Sealing.
8 Rubberised End Caps
Self Sealing Intermediate Cover Plates, to Standard ISO Housing Dimensions.
9 Torque Arm Assembly
For Easy Adjustment of the Belt.
SIZE : SMR B C D E F G H
RATIO : 5:1 13:1 20:1
Contact Me
Welcome to contact William for more details!
Model | B13/B20 | C13/C20 | D13/D20 | E13/C20 | F13/E20 | G13/F20 | H13/G20 | J13/J20 |
Output(RPM) | 10-115 | 10-110 | 10-110 | 10-105 | 10-105 | 10-100 | 10-100 | 10-100 |
Power Rating(KW) | 0.29-3.11 | 0.49-4.62 | 0.82-7.81 | 1.25-11.55 | 1.97-17.01 | 3.11-27.09 | 4.9-40.7 | 7.8-60.5 |
Permissible torque(Nm) | 277 | 468 | 783 | 1194 | 1881 | 2970 | 4680 | 7449 |
Model | B5 | C5 | D5 | E5 | F5 | G5 | H5 | J5 |
Output(RPM) | 100-400 | 100-400 | 100-400 | 100-400 | 100-400 | 100-400 | 100-400 | 100-400 |
Power Rating(KW) | 2.68-7.14 | 4.2-9.66 | 6.62-15.65 | 10.29-24.57 | 15.12-35.91 | 25.2-59.9 | 36.2-81.9 | 62.2-134.2 |
Permissible torque(Nm) | 256 | 401 | 632 | 983 | 1444 | 2407 | 3457 | 5940 |
Dimension(mm) | SMR Size | |||||||
SMR-B | SMR-C | SMR-D | SMR-E | SMR-F | SMR-G | SMR-H | SMR-J | |
Standard size of shaft | 30 | 40 | 50 | 55 | 65 | 75 | 85 | 100 |
Alternative size of shaft | 40 | 50 | 55 | 65 | 75 | 85 | 100 | 120 |
Input shaft keyway | 6×3.5×50 | 6×3.5×59 | 8x4x63 | 8x4x70 | 10x5x70 | 12x5x90 | 14×5.5×100 | 16x6x100 |
Company Profile
l The largest manufacturer and exporter of worm gear reducers in Asia.
l Established in 1976, we transformed from a county owned factory to private 1 in 1996. HangZhou SINO-DEUTSCH POWER TRANSMISSION EQUIPMENT CO.,LTD is our new name since 2001.
l We are the first manufacturer of reducers and gearboxes in China who was given export license since year 1993.
l “Fixedstar” brand gearboxes and reducers are the first owner of CHINA TOP BRAND and Most Famous Trade Mark for reducers.
First to achieve ISO9001 and CE Certificate among all manufacturers of gearboxes in China.
As a professional manufacturer of worm gearbox and worm gear reducers in China, we mainly produce reduction gearbox,aluminum case worm gearboxes,arc gear cylindrical worm gearboxes, worm gear reducers, in line helical gearboxes, and cyclo drive reducers, etc. These products feature rational structure, stable performance, and reliable quality, and so on. They are widely used in power, mining, metallurgy, building material, chemical, food, printing, ceramic, paper-making, tobacco, and other industries.
We have 600 workers in our factory, which covers 70,000 square CZPT in HangZhou. We have been making 2,500 units of reducers everyday since 2012. We are proudly exporting 70% of our products to more than 40 countries all over the word. Our customers come from Italy, Germany, USA, Canada, Spain, UK, Mexico, Brazil, Argentina, Turkey, Singapore and other main industrial countries in the world. 30% of them are OEM made for direct manufacturers of other products.
We warmly welcome customers from other parts of the world to visit us. Seeing is believing. We are very confident that after visiting our facility, you will have confidence on our products. We have the latest automatic equipments and experienced workers to ensure the stable quality and large output. We have the most sophisticated technical and engineering team to support most demanding requirement on standard and OEM products.
Looking CZPT to meeting you in HangZhou, China.
Application: | Industry |
---|---|
Hardness: | Hardened |
Type: | Bevel Gear |
Size: | B C D E F G H J |
Material: | Cast Iron |
Manipulate Way: | Robotics |
Worm gear reducer gearbox
A worm gear reducer gearbox is a gear reducer gearbox that uses a worm gear train to reduce the required force. Unlike traditional gear reducer gearboxes, these units are small and require low horsepower ratings. This reduces their efficiency, but their low cost and compact design help make up for this shortcoming. However, these gear reducer gearboxes have some drawbacks, including their tendency to lock up when reversing.
high efficiency
High-efficiency worm reducer gearboxes are ideal for applications where high performance, repeatability, and accuracy are critical. It consists of an input hypoid gear and an output hypoid bevel gear. The input worm rotates perpendicular to the output worm, so for every revolution of the input worm, the output gear makes one revolution. This arrangement reduces friction (another source of energy loss) in a high-efficiency worm gear to at least two arc minutes.
Compared with worm gear reducer gearboxes, hypoid gearmotors offer several advantages, including lower operating costs and higher efficiency. For example, hypoid gear motors can transmit more torque even at high reduction ratios. Also, they are more efficient than worm gear reducer gearboxes, which means they can produce the same output with a smaller motor.
In recent years, the efficiency of worm gear reducer gearboxes has been dramatically improved. Manufacturers have made great strides in materials, design, and manufacturing. New designs, including dual-enveloping worm gear reducer gearboxes, increase efficiency by 3 to 8 percent. These improvements were made possible through countless hours of testing and development. Worm gear reducer gearboxes also offer lower initial costs and higher overload capability than competing systems.
Worm gear reducer gearboxes are popular because they provide maximum reduction in a small package. Their compact size makes them ideal for low to medium-horsepower applications and they are reticent. They also offer higher torque output and better shock load tolerance. Finally, they are an economical option to reduce the device’s power requirements.
low noise
Low-noise worm gear reducer gearboxes are designed to reduce noise in industrial applications. This type of reducer gearbox uses fewer bearings and can work in various mounting positions. Typically, a worm reducer gearbox is a single-stage unit with only one shaft and one gear. Since there is only one gear, the noise level of the worm gear reducer gearbox will be lower than other types.
A worm gear reducer gearbox can be integrated into the electric power steering system to reduce noise. Worm reducer gearboxes can be made and from many different materials. The following three-stage process will explain the components of a low-noise worm reducer gearbox.
Worm gear reducer gearboxes can be mounted at a 90-degree angle to the input worm shaft and are available with various types of hollow or solid output shafts. These reducer gearboxes are especially beneficial for applications where noise reduction is essential. They also have fewer parts and are smaller than other types of reducer gearboxes, making them easier to install.
Worm gear reducer gearboxes are available from various manufacturers. Due to their widespread availability, gear manufacturers maintain extensive inventories of these reducer gearboxes. The worm gear ratio is standard, and the size of the worm gear reducer gearbox is universal. Also, worm gear reducer gearboxes do not need to be sized for a specific purpose, unlike other load interruptions.
A worm gear reducer gearbox is a transmission mechanism with a compact structure, large transmission ratio, and self-locking function under certain conditions. The worm gear reducer gearbox series products are designed with American technology and have the characteristics of stable transmission, strong bearing capacity, low noise, and compact structure. In addition, these products can provide a wide range of power supplies. However, these worm reducer gearboxes are prone to leaks, usually caused by design flaws.
Worm gear reducer gearboxes are available in single-stage and double-stage. The first type consists of an oil tank that houses the worm gear and bearings. The second type uses a worm gear with a sleeve for the first worm gear.
When choosing a gear reducer gearbox, it is essential to choose a high-quality unit. Improper gear selection can cause rapid wear of the worm gear. While worm gear reducer gearboxes are generally durable, their degree of wear depends on the selection and operating conditions. For example, overuse, improper assembly, or working in extreme conditions can lead to rapid wear.
Worm reducer gearboxes reduce speed and torque. Worm gears can be used to reduce the speed of rotating machines or inertial systems. Worm gears are a type of bevel gear, and their meshing surfaces have great sliding force. Because of this, worm gears can carry more weight than spur gears. They are also harder to manufacture. However, the high-quality design of the worm gear makes it an excellent choice for applications requiring high torque and high-speed rotation.
Worm gears can be manufactured using three types of gears. For large reduction ratios, the input and output gears are irreversible. However, the worm reducer gearbox can be constructed with multiple helices. The multi-start worm drive also minimizes braking effects.
Self-locking function
The worm reducer gearbox is self-locking to prevent the load from being driven back to the ground. The self-locking function is achieved by a worm that meshes with the rack and pinion. When the load reaches the highest position, the reverse signal is disabled. The non-locking subsystem back-drives the load to its original position, while the self-locking subsystem remains in its uppermost position.
The self-locking function of the worm reducer gearbox is a valuable mechanical feature. It helps prevent backing and saves the cost of the braking system. Additionally, self-locking worm gears can be used to lift and hold loads.
The self-locking worm gear reducer gearbox prevents the drive shaft from driving backward. It works with the axial force of the worm gear. A worm reducer gearbox with a self-locking function is a very efficient machine tool.
Worm gear reducer gearboxes can be made with two or four teeth. Single-ended worms have a single-tooth design, while double-ended worms have two threads on the cylindrical gear. A multi-boot worm can have up to four boots. Worm reducer gearboxes can use a variety of gear ratios, but the main advantage is their compact design. It has a larger load capacity than a cross-shaft helical gear mechanism.
The self-locking function of the worm reducer gearbox can also be used for gear sets that are not necessarily parallel to the shaft. It also prevents backward travel and allows forward travel. The self-locking function is achieved by a ratchet cam arranged around the gear member. It also enables selective coupling and decoupling between gear members.
high gear ratio
Worm reducer gearboxes are an easy and inexpensive way to increase gear ratios. These units consist of two worm gears – an input worm gear and an output worm gear. The input worm rotates perpendicular to the output worm gear, which also rotates perpendicular to itself. For example, a 5:1 worm gearbox requires 5 revolutions per worm gear, while a 60:1 worm gearbox requires 60 revolutions. However, this arrangement is prone to inefficiency since the worm gear experiences only sliding friction, not rolling friction.
High-reduction applications require many input revolutions to rotate the output gear. Conversely, low input speed applications suffer from the same friction issues, albeit with a different amount of friction. Worms that spin at low speeds require more energy to maintain their movement. Worm reducer gearboxes can be used in many types of systems, but only some are suitable for high-speed applications.
Worm gears are challenging to produce, but the envelope design is the best choice for applications requiring high precision, high efficiency, and minimal backlash. Envelope design involves modifying gear teeth and worm threads to improve surface contact. However, this type of worm gear is more expensive to manufacture.
Worm gear motors have lower initial meshing ratios than hypoid gear motors, which allows the use of smaller motors. So a 1 hp worm motor can achieve the same output as a 1/2 hp motor. A study by Agknx compared two different types of geared motors, comparing their power, torque, and gear ratio. The results show that the 1/2 HP hypoid gear motor is more efficient than the worm gear motor despite the same output.
Another advantage of the worm gear reducer gearbox is the low initial cost and high efficiency. It offers high ratios and high torque in a small package, making it ideal for low to medium-horsepower applications. Worm gear reducer gearboxes are also more shock-resistant.
editor by CX 2023-05-26